Multivalent binding of the ETO corepressor to E proteins facilitates dual repression controls targeting chromatin and the basal transcription machinery.
نویسندگان
چکیده
E proteins are a family of helix-loop-helix transcription factors that play important roles in cell differentiation and homeostasis. They contain at least two activation domains, AD1 and AD2. ETO family proteins and the leukemogenic AML1-ETO fusion protein are corepressors of E proteins. It is thought that ETO represses E-protein activity by interacting with AD1, which competes away p300/CBP histone acetyltransferases. Here we report that E proteins contain another conserved ETO-interacting region, termed DES, and that differential associations with AD1 and DES allow ETO to repress transcription through both chromatin-dependent and chromatin-independent mechanisms. At the chromatin level, AD1 and AD2 cooperatively recruit p300. ETO interacts with AD1 to abolish p300 recruitment and to allow HDAC-dependent silencing. At the post-chromatin-remodeling level, binding to DES enables ETO to directly inhibit activation of the basal transcription machinery. This novel repression mechanism is conserved in ETO family proteins and in the AML1-ETO fusion protein. In addition, the repression capacity exerted by each mechanism is differentially modulated by cross talk among various ETO domains and the AML1 domain of AML1-ETO. In particular, the oligomerization domain of ETO plays a major role in targeting ETO to the DES region and independently potentiates the TAFH domain-mediated AD1 interaction. The ability to exert repression at different levels not only may allow these corepressors to impose robust inhibition of signal-independent transcription but may also allow a rapid response to signals. In addition, our newly defined domain interactions and their interplays have important implications in effectively targeting both E-protein fusion proteins and AML1-ETO found in cancers.
منابع مشابه
Co-repressor complexes and remodelling chromatin for repression.
Recent progress identifies targeted chromatin remodelling by co-repressor complexes as being an integral component of transcriptional silencing. Here we discuss how chromatin structure and the basal transcriptional machinery are manipulated by the co-repressor complex containing the Mi-2 nucleosomal ATPase, the histone-binding protein RbAp48 and histone deacetylase and by the co-repressor compl...
متن کاملMeCP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery.
The pathways for selective transcriptional repression of methylated DNA templates by the methyl-CpG-binding protein MeCP2 have been investigated using a purified in vitro transcription system that does not assemble chromatin. MeCP2 selectively inhibits transcription complex assembly on methylated DNA but does not destabilize a pre-assembled transcription complex. MeCP2 functions to repress tran...
متن کامل14-3-3 binding sites in the snail protein are essential for snail-mediated transcriptional repression and epithelial-mesenchymal differentiation.
The Snail transcription factor is a repressor and a master regulator of epithelial-mesenchymal transition (EMT) events in normal embryonic development and during tumor metastases. Snail directly regulates genes affecting cell adhesion, motility, and polarity. Invasive tumor cells express high levels of Snail, which is a marker for aggressive disease and poor prognosis. Transcriptional repressio...
متن کاملLong- and Short-Range Transcriptional Repressors Induce Distinct Chromatin States on Repressed Genes
Transcriptional repression is essential for establishing precise patterns of gene expression during development. Repressors governing early Drosophila segmentation can be classified as short- or long-range factors based on their ranges of action, acting either locally to quench adjacent activators or broadly to silence an entire locus. Paradoxically, these repressors recruit common corepressors...
متن کاملStructural basis for targeting the chromatin repressor Sfmbt to Polycomb response elements.
Polycomb group (PcG) protein complexes repress developmental regulator genes by modifying their chromatin. How different PcG proteins assemble into complexes and are recruited to their target genes is poorly understood. Here, we report the crystal structure of the core of the Drosophila PcG protein complex Pleiohomeotic (Pho)-repressive complex (PhoRC), which contains the Polycomb response elem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 29 10 شماره
صفحات -
تاریخ انتشار 2009